TYPICAL VOLTAGE DROP CALCULATION FOR 2 - WIRE SYSTEM

VOLTAGE DROP (COPPER CONDUCTOR) = $\frac{D \times A \times N \times 22}{CIRCULAR MILS}$

D = Length of section, in feet.

A = Line operating amperes drawn by one light.

N = Number of lights in the circuit beyond the section.

WIRE SIZE (AWG)	AREA (Circular Mils)		
14	4,110		
12	6,530		
10	10,380		
8	16,510		
6	26,250		
4	41,740		

LINE OPERATING AMPERES
FOR
HIGH PRESSURE SODIUM
LUMINAIRES
(AT 115 VOLTS)

100 Watt 1.10 Amps
ENERGY EFFICIENT

100 Watt 1.25 Amps

150 Watt 1.80 Amps

200 Watt 2.35 Amps

250 Watt 2.90 Amps

TYPICAL MULTIPLE STREET LIGHTING SYSTEM

EXAMPLE CALCULATION:

FIND TOTAL VOLTAGE DROP IN CIRCUIT #1: (115 volt system)

NOTE:

Dimension "a" is the distance between the service can and the adjacent load pull box. Use "a"=10' for standard installations where the load pull box is immediately adjacent to the service can.

TOTAL VOLTAGE DROP = 6.83

Voltage drop calculations

Section a =	10 (2.9 x 4) (22)	= 0.25
Section a -	10,380	- 0.20
Section b + c =	360 (2.9 x 2) (22)	= 4 43
COOLIGIT D C	10,380	
Section d + e =	350 (2.9 x 1) (22)	= 2.15
000	10,380	

LEGEND
250W High Pressure
Sodium Luminaire

C-1 Circuit #1

Service Can

_____ Conduit with #10 AWG Conductors

NOTES:

- Design <u>must be</u> based on a two (2) wire system, even though three (3) wires (with a single common wire) are actually used.
- 2. Maximum voltage drop allowed in 115 volt system = 8.05 volts.

DATE: 01/17/2007		NOT TO SCALE		
REVISION	BY	APPROVED		DATE

CITY OF ELK GROVE - PUBLIC WORKS

2 - WIRE STREET LIGHT SYSTEM WIRE SIZE AND VOLTAGE DROP CALCULATION APPROVED BY:

CITY ENGINEER

DRAWING NUMBER

SL - 13

O:\Public Works\Drawings\COEG-StdDwgs\StreetLights\SL13.dw